Global weak solution of 3D-NSE with exponential damping

نویسندگان

چکیده

Abstract In this paper, we prove the global existence of incompressible Navier-Stokes equations with damping α ( e β ∣ u 2 − 1 ) \alpha \left({e}^{\beta | u{| }^{2}}-1)u , where use Friedrich method and some new tools. The delicate problem in construction a solution is passage to limit exponential nonlinear term. To solve problem, polynomial approximation part type interpolation between L ∞ R + , 3 {L}^{\infty }\left({{\mathbb{R}}}^{+},{L}^{2}\left({{\mathbb{R}}}^{3})) space functions f f such that ∈ × f{| }^{2}}-1)| }^{2}\in {L}^{1}\left({{\mathbb{R}}}^{+}\times {{\mathbb{R}}}^{3}) . Fourier analysis standard techniques are used.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exponential decay for the solution of semilinear viscoelastic wave equations with localized damping

In this paper we obtain an exponential rate of decay for the solution of the viscoelastic nonlinear wave equation utt −∆u+ f(x, t, u) + ∫ t 0 g(t− τ)∆u(τ) dτ + a(x)ut = 0 in Ω× (0,∞). Here the damping term a(x)ut may be null for some part of the domain Ω. By assuming that the kernel g in the memory term decays exponentially, the damping effect allows us to avoid compactness arguments and and to...

متن کامل

Numerical Solution and Exponential Decay to Von Kármán System with Frictional Damping

In this work we consider the Von Kármán system with frictional damping acting on the displacement and using the Method of Nakao we prove the exponential decay of the solution. The numerical scheme is presented for calculate the solution and to verify the long-time decay energy.

متن کامل

Global Weak Solutions to the Compressible Quantum Navier-Stokes Equations with Damping

The global-in-time existence of weak solutions to the barotropic compressible quantum Navier-Stokes equations with damping is proved for large data in three dimensional space. The model consists of the compressible Navier-Stokes equations with degenerate viscosity, and a nonlinear third-order differential operator, with the quantum Bohm potential, and the damping terms. The global weak solution...

متن کامل

Exponential Stability of Wave Equations with Potential and Indefinite Damping

First, we consider the linear wave equation utt−uxx +a(x)ut + b(x)u = 0 on a bounded interval (0, L) ⊂ R. The damping function a is allowed to change its sign. If a := 1 L R L 0 a(x)dx is positive and the spectrum of the operator (∂xx− b) is negative, exponential stability is proved for small ‖a− a‖L2 . Explicit estimates of the decay rate ω are given in terms of a and the biggest eigenvalue of...

متن کامل

Global Small Solution to the 2D MHD System with a Velocity Damping Term

This paper studies the global well-posedness of the incompressible magnetohydrodynamic (MHD) system with a velocity damping term. We establish the global existence and uniqueness of smooth solutions when the initial data is close to an equilibrium state. In addition, explicit large-time decay rates for various Sobolev norms of the solutions are also given.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Open Mathematics

سال: 2022

ISSN: ['2391-5455']

DOI: https://doi.org/10.1515/math-2022-0050